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Abstract. The partition function for a quantum mechanical system can-at least formally- 
be expressed as a high-temperature series in terms of the [ function of the system’s 
Hamiltonian. This is done explicitly for a system of non-interacting harmonic oscillators. 
The Hamilton [ function belongs to a class of [ functions Zf( n , ) ( n , w ,  + n z w z + .  . .+ n” + 
a)-’  summed over non-negative integers n , .  Very little is known about these [ functions, 
and an investigation of some of their properties is presented. 

1. Introduction 

A simple argument given in Q 2 suggests that the partition function Z of a quantum 
mechanical system with Hamiltonian H has a high- T expansion ( T = temperature) in 
terms of the 5 function l(s I H )  of H. In 9 2 this will be shown to be true for a system 
of non-interacting harmonic oscillators. A comparable result is obtained for a system 
of non-interacting supersymmetric oscillators. 

The Hamiltonian 5 function for N non-interacting oscillators: 

X 

~ ( s l  H) = ( n , w ,  + n , w z + .  . . + nNwN +a)-‘ 
n ,  =O 

is distinguished from the operator 5 functions usually encountered in field theory in 
that the denominator function is linear rather than quadratic in the summation indices 
ni.  Whereas 5 functions of the latter type have often been studied, there seems to be 
virtually nothing in the literature on 5 functions of the form (1.1). Therefore, a 
substantial part of the present paper ( 0  3) will be devoted to these 5 functions and 
their properties. This exercise brings into focus important differences between single- 
sum and multiple-sum 5 functions which have not previously received attention. 

2. Hamiltonian zeta function and the partition function 

2.1. High-T expansion of the partition junction 

Consider the partition function for a quantum mechanical system with discrete energy 
levels E,  > 0: 

00 

Z = T r e x p ( - P H ) =  exp(-P&) (2.1) 
n=O 
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where as always a sum over states is understood. By assumption the Hamiltonian H 
is a well behaved operator whose zeta function 

is meromorphic in s with poles along the real axis, ending with a rightmost pole at 
finite position s = C > 0 [l]. The series (2.2) converges absolutely for Re s > C ;  
however, the function defined by this series can be continued to all s and is meromorphic 
as stated. 

An interesting possibility is to express 2 as a high-T series in terms of f ( s 1 H ) .  
Formally this can be done in the following way. Expand the exponential in (2.1) to 
obtain the double series 

This step is well defined since the exponential series has an infinite radius of conver- 
gence. Next, commute 8, with Sk and use (2.2) to find 

where f (  - k 1 H )  is finite as long as s = -k is not a pole of the 5 function. This is the 
crucial step and it must be carefully justified. The curly bracket { } represents 
(unknown) extra terms which may be generated by the commutation of Z n  with zk. 
Given l(s I H )  as a function of s, it should be possible to justify this commutation and 
compute { }. Until this has been done, the series (2.3) remains formal and incomplete. 
The virtue of this expression is that i t  shifts the burden of computation from direct 
evaluation of (2.1) to the evaluation of (2.2), which might be less difficult. 

In this section we try out the program just described on the exactly solvable harmonic 
oscillator problem. For a single oscillator, the f function (2.2) is just the elementary 
Hurwitz f function f ( s ,  a ) .  When N non-interacting oscillators are considered, a new 
kind of f function ( 1 . 1 )  is encountered whose properties will be investigated in § 3. 
Supersymmetric oscillators will also be considered. An appropriate 5 function for 
fermionic .harmonic oscillators is identified. The application of the method to less 
trivial physical systems appears to hold promise, and work in this direction is in progress. 

2.2. Ordinary oscillators 

The energy levels En = ( n  + a ) o  of the harmonic oscillator define the Hamiltonian f 
function: 

where l(s, a )  is the Hurwitz 5 [unction (see (3.3) below). One readily writes down 
(2.3) for this case: 

z,(w)=exp( - a p w ) [ l  -exp(-pw)]-’ 

(2.5) 
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where the curly bracket term is straightforward to evaluate [ 2 , 3 ]  using the known 
meromorphic properties of l(s, a ) ,  namely a single pole as s = 1 with unit residue. 
Becausel(  - k ,  a )  = - B k + l ( a ) / ( k + l ) ,  Bk+1(1/2)=(2-k-1)Bk+l,and B,,,,.,,=O,where 
& ( a )  and B, are Bernoulli polynomials and numbers respectively [4,5], ( 2 . 5 )  with 
a = f  is just the familiar result 

Z,(w) = (2  sinh P0/2) - ’  

For N uncoupled oscillators the partition function becomes 

ZB = zb(u I ) . . . z b ( w N  ) 

= f e x p [ - ( n l + a ) p w l l  . . .  exp[-(n.+a)pw,l. ( 2 . 7 )  
n ,  = O  

Here we can expand the exponentials individually to find ZB as a product of the high- T 
series ( 2 . 5 ) .  Alternatively, we can write the entire summand as a single exponential 
as in ( 2 . 3 ) ,  and expand this to obtain the explicit (i.e. not in product form) high-T 
series for ZB. The 5 functions (1.1) are the Hamiltonian 5 functions appearing in this 
series. To perform this rearrangment to all orders (from a product of infinite series 
to the explicit high-T series) is not trivial. Nevertheless, the factors & ( U )  in ( 2 . 7 )  are 
elementary functions and  one has no real need for the high- T series of ZB. Therefore, 
we shall not discuss this series. 

2.3. Supersymmetric oscillators 

Proceeding to supersymmetric oscillators, we find that supersymmetry precisely corre- 
sponds to an intrinsic and  important property of 5 functions. This property is the 
pairing of l functions with non-alternating and alternating sign under an otherwise 
identical sum. Such pairs of 5 functions have quite different-yet closely related- 
properties. The paired Hurwitz 5 functions l(s, a )  and ~ ( s ,  a )  defined in ( 3 . 3 )  are the 
5 functions relevant for bosonic and fermionic oscillators respectively. Little tabulated 
information is available on ~ ( s ,  a ) ,  but in [ 3 ]  many of the properties of this function 
were derived, and its close parallel with ((s, a )  exhibited. 

The partition function for the fermionic sector of the supersymmetric oscillator can 
be found in a variety of ways. A fermionic oscillator has two energy levels EL = ( n  - f ) w ,  
n = O  or 1 (unoccupied or occupied) [6] and partition function 

Zdo) = exp( - P E ’ , )  + exp( - P E ; )  = 2 cosh(Pw/2). (2.8) 
A more general approach is to use the path integral formalism. Thus for a fermionic 
oscillator: 

Z,(w) = det- ( -- ;I;+-.) 
2 

=? ( ( 2 n  + 1 ) 2  ;+u2 7T- 

where the subscript ‘minus’ means that antiperiodic boundary conditions around the 
time circle are used rather than the periodic boundary conditions appropriate for the 
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bosonic sector, This makes the path integral variables Grassmannian and puts the 
determinant in the numerator. The supersymmetric oscillator partition function is [ 6 ]  

Because only a finite number of fermionic energy levels exist, it would seem 
impossible to define a 'fermionic' 5 function analogous to l ( s ) H )  for the high-T 
expansion of Zr. However, for harmonic oscillators at least, the following definition 
is the correct one: 

ZbZf=coth Pw/2.  

(2.9) 

In this definition the bosonic energy levels En are used, but an alternating sign has 
been introduced. Thus ~ ( s  I H) = w - ' ~ ( s ,  a )  for the oscillator. Equation (2.9) is to be 
used in conjunction with a second definition, giving l/Zf in terms of the bosonic energy 
levels: 

= exp( - a+)[ 1 + exp( - P o ) ] - ' .  (2.10) 

Here there is no extra term and the & ( a )  = 27(  - k, a )  [3] are Euler polynomials [4]. 
and is therefore correct for the 

fermionic oscillator. This formula seeks to define the fermionic partition function 
directly in terms of bosonic energy levels. Its relevance for more complex systems is 
uncertain at this point. Still, this expression may deserve further study. 

For N uncoupled supersymmetric oscillators the inverse fermionic partition func- 
tion l/ZF is a product of the functions (2.10). The extension of the fermionic 5 function 
(2.9) to N oscillators is 

Equation (2.10) coincides with (2.8) for a = 

m 
v(sIH)-' 1 ( - l ) n l + - + n  q f l , w , + .  . (2.1 1) 

n, = o  

with a = ( U ,  + w 2 + .  . . w N ) a .  This 5 function appears in the high-T expansion of l /ZF. 
Its properties are investigated below. 

3. Multiple harmonic oscillator 6 functions 

The general form characteristic of multiple harmonic oscillator 5 functions is 
CO c ( a ,  n 1 + . . . + U N n ,  + 6 )  -"f( ni ) 

n, -0 
(3 .1)  

where the main factor in the summand is linear in the indices ni and f ( n i )  is some 
chosen function of the n, .  Aside from a formula for N = 2 obtained in [7], the author 



Multiple harmonic oscillator 5 functions 93 1 

is aware of no other results on these 5 functions. The purpose of this section is to 
derive some of their properties. It may be helpful to begin with a few general remarks. 

3.1. Single-sum 5 functions 

Consider a generalised 5 function l(s / x i )  defined by an infinite numerical series: 

where the summand f,(s, xi) depends on the complex variable s and some parameters 
xi . This is a generalisation of the defining equations of the Riemann and Hurwitz 5 
functions [ 5 , 8 ] :  

m = l  m = 1  

U- X 

l ( s , u ) =  c (n+U)- 7 ( s , u ) =  C ( - ) n ( n + a ) - s .  (3.3) 
n =o n = O  

The series for 5(s) and l(s, a )  converge only for Re s > 1. By analytic continuation, 
these series are shown to define meromorphic functions having poles at s = 1 with unit 
residue. ~ ( s )  and ~ ( s ,  a )  are regular for all finite s. Equation (3.2) is to be understood 
in the same way-analytic continuation reveals that the numerical series defines a 
meromorphic function of s. A convenient way of performing this analytic continuation 
is to derive a regularisation formula for 5(s I xi). The idea is very simple. 

A basic observation made in [9] is that many generalised l functions and Dirichlet 
series can be expressed in terms of simple 5 functions which have known properties, 
such as those in equation (3.3). We refer to any formula giving an  (unknown) 
generalised 6 function explicitly in terms of one or more known 5 functions as a 
regularisation formula. Such a formula fully reveals the analyticity of the generalised 
5 function-its poles and residues in particular. 

Previous work [3,9] on regularisation formulae has concentrated on single-sum 5 
functions. It was possible to deal with a rather large class of 5 functions by repeated 
use of the binomial theorem; for example, 

m 

( m u + a ) - s  
m = l  

= k = O  f ( i s ) u k [ ( a ( s + k ) )  a>0 .  (3.4) 

Here it is obvious that the left-hand side converges for Re as > l-in fact, converges 
absolutely since all terms are positive-because the higher terms are - m P r .  The 
divergence of the series for Re as = 1 is expressed by the k = 0 term in the final equality. 
Moreover, the binomial series representing ( m a  + U ) - '  is absolutely convergent for 
1 a I < 1, while the sum over m representing l( a(s + k ) )  is absolutely convergent for 
Re as > 1. Under these circumstances, standard theorems in series analysis (see, e.g., 
[lo]) assure us that the value of the series (3.4) is not affected by commuting I;, and 
X k ,  and must be correctly given by the final equality. 
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When one attempts to extend this type of single-sum result to multiple-sum prob- 
lems, a qualitatively different situation is encountered. True, there are some multiple 
series for which the binomial theorem can be used essentially as above, e.g. 

2 f ( n a + l / m p ) - s  
n = l  m = 2  

Here a < 1 in (3.4) has been replaced by m-' < 1 and the binomial theorem still applies. 
Physical problems, however, generally involve series of the form 

X 

C ( n " + m P ) - '  a, p > 0. 
n , m = l  

Here neither term in the binomial is guaranteed larger than the other and  the binomial 
theorem cannot be used to factorise the n and m sums. Therefore Xn and I;, cannot 
be separately evaluated in terms of Riemann 5 functions. 

Fortunately, using methods tailored to specific cases, it is possible to obtain 
regularisation formulae for multiple-sum 5 functions, as we now show. 

3.2. Multiple-sum 5 functions 

Consider the 5 function 

Observe that 

1 "  02 

f ( n , +  ...+ n N ) =  ( m  - 1 )( m - 2) . . . ( m  - N + 1 )f( m )  
n, = 1 ( N -  1 )  ! m = ]  

(3.8) 

for any function f (x), where the coefficient off ( m )  is the number of ways the integers 
n, can add  up  to give m = n ,  +. . .+ n N .  From (3.7) and (3.8) we find the finite 
regularisation formula 

1 N-I  

where 
N - l  

( m - I ) (  m - 2) . . . ( m  - N + 1 )  = C C," m '. 
k =O 

Z';(s) has simple poles at s = 1 , 2 , .  . . , N. The first three Z'; are 

z:(s) = 5(s - 1 )  - 5(s) 
2z:(s) = 5(s - 2) - 35( s - 1 )  + 25(s) 

~Z:(S)  = 5 ( ~  - 3 )  - 6 5 ( ~  -2)  + 1 l l ( s  - 1 )  - 6 5 ( ~ ) .  

(3.10) 

( 3 . 1 1 )  
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The rearrangment of terms leading from (3 .7)  to (3 .9)  is allowable because the multiple 
series (3.7) is manifestly, absolutely convergent for large values of Re s. Thus (see, 
e.g., [ lo] )  arbitrary rearrangements of terms in (3 .7)  can have no effect on the value 
of this series. Its value is correctly given by the right-hand side in (3 .9)  as long as the 
left-hand side is convergent. Once (3 .9)  is established for large Re s, the right-hand 
side can then be used to continue the left-hand side throughout the s plane. 

To make the procedure a little more transparent, consider 
1 

Z:(s)= 1 ( n + m ) - '  
n.m = 1 

1 2 3 4  - _  - +-+-+;+. 
2' 3' 4' 5 

The right-hand side has poles at s = 1 , 2 .  The s = 2 pole tells us that the double series 
diverges for Re s = 2. For Re s > 2 this series is absolutely convergent. But with the 
help of the right-hand side, one can continue the function defined by the double series 
to all values of s. 

All of the regularisation formulae in this section belong to one of two categories: 
formulae like (3 .4)  or (primarily) formulae like (3.9).  Both categories are absolutely 
convergent for suitable s and regrouping of terms can be done freely. The final results 
obtained can be justified by the same arguments used for (3.4) and (3 .9) .  

Equation (3 .8)  is quite helpful in that it can be used to find the regularisation 
formulae of many other 5 functions-whenever the summand depends only on n,  + n, + 
. . . + nN. An example is the alternating sign series: 

s 

Z;(s)=  ( - I ) " ) +  + n \ + l ( n l + . . . + n N ) - i  
n ,  = I 

(3 .12)  

For the most part, alternating sign series can be handled much like their non-alternating 
sign partners. For this reason, we shall concentrate on the latter in this section. 

Consider next the example 

Z : ( s , a , a ) =  1 ( * ) " I +  + n \ + ' ( ( n l + . . . + n N ) " + a ) - '  
n , = l  

(3 .13)  

where a > 0 .  Here the binomial theorem is used exactly as in (3 .4) .  It is worth 
mentioning that for CY = 1 the 5 function (3 .13)  can be expressed as a finite series in 
terms of the generalised Riemann 5 function 5(s, a ) .  For example (see [7] for a 
different derivation) 

X 

z:(s,a,  I ) =  C ( m + 1 - a - l ) ( m + a ) - ' + a - '  
m =O 

= 5 ( s - 1 ,  a ) - ( l + a ) b ( s ,  a ) + a - ' .  (3.14) 
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A well known property [5] of 5(s, a )  are the special values 5(  -m, a ) =  
- ( m +  l ) - ’ E m + l ( a )  in terms of Bernoulli polynomials. More general 5 functions of 
this type have a similar property [3]. Thus by setting s = -m in (3.4) and (3.13) we 
obtain polynomials because the binomial coefficient cuts off the sum over k. 

Next, observe that 
1 f nj( n ,  + . . . + n ) - ”  = - z:(s - 1 )  

n, = I N N  
j fixed (3.15) 

is independent of the label j and trivial to derive. The same trick can be used to obtain 
many other formulae, e.g. 

(3.16) 

To generalise the preceding discussion, let us consider the series 

“ 1  

n , m = l  k = l  k 
f n ” ( n + m ) - ’ =  , g L l ( k )  

g , ( k )  = 1 +2“ +. . . + ( k -  1 ) ”  a>0.  (3.17) 

For integral a = N the MacLaurin summation formula [4] can be used to evaluate 
gIv(k) :  

g N ( k )  == 1 k N + ’ + B l k N  ++E2 ( Y ) k N - ‘  

+4E4( ; )k”-’+&( y ) k ” - l + .  . . (3.18) 

where ko and negative powers of k are omitted and the En are Bernoulli numbers. Thus 

2 n N ( n + m ) - s  
n , m = l  

5 ( s  - N + 1 )  + B I ~ ( s  - N) +$E2 
1 

N + l  

+ :E.,( y )  5( s - N + 3) + . . . 

=- 

(3.19) 

where for even N the series terminates at 5 ( s  - l ) ,  and for odd N at 5 ( s  - 2), e.g. 

f n 2 ( n  + m ) - *  = :[25(s - 3 )  - 35(s -2)  + 5(s - 113 
n . m = l  

f n4(n + m ) - s  =&[65(s - 5 )  - l X ( s  - 4 ) +  lO5(s -3)  - 5(s - 113. 
n , m = l  

(3.20) 

Again the rearrangment of terms leading to these regularisation formulae can be 
justified by the absolute convergence of the left-hand series for sufficiently large Re s. 
For non-integral a the Euler-MacLaurin formula does not help us evaluate the 
‘degeneracy’ factor g , ( k )  in (3.17) and we are unable to give an explicit regularisation 
formula. 
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We mention in passing that one can regularise higher sums of the type (3.17) in 
terms of the series (3.17) itself, e.g. 

CCI a f n y ( n , + n , + n , ) - ' =  1 ( k - 1 )  1 n y ( k + n , ) - ' .  (3.21) 

Using manipulations of this nature, one is able to set up a hierarchy of 5 functions, 
with more complicated ones being regularised in terms of simpler ones, and the entire 
edifice built upon one's ability to explicitly regularise the simplest 5 function at the 
bottom of the edifice. 

n,  = I k = l  n , = I  

Next consider the series 

k - l  
g ( k ) =  1 ( k - n ) " n P  

n = l  
(3.23) 

For integral (Y = N, p = M we can evaluate g ( k )  by the Euler-MacLaurin formula [4]: 

+. . .] (3.24) 

where, in the curly bracket, terms with negative powers of k as well as the k o  term are 
discarded. Inserting g ( k )  in (3.22) we obtain the regularisation formula for this 5 
function with (Y = N, p = M. For non-integral a, p we encounter the same problem as 
before. Again, higher sums of the same type can be regularised in terms of the 3 
function (3.22). 

Up to now we have dealt only with series of the form (3.1) with ai = 1 .  For arbitrary 
ai the analysis becomes more complicated. However, the binomial theorem can be 
used to obtain regularisation formulae. To illustrate the method consider 
a 1 ( n " + a m @ ) - '  

n , m = l  

(3.25) 

Here 1 s a < 2  and the commutation of sums is justified as before. If one has a 
regularisation formula for 2 , ,  in the final line, then (3.25) becomes a regularisation 
formula for the left-hand side. The device employed in (3.25) can be generally applied 
to sums of the form (3.1). As this is evident, but one obtains rather lengthy expressions, 
we refrain from giving more details. 
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4. Conclusion 

The 5 functions considered here are characteristic of multiple harmonic oscillator 
problems. Field theories defined on the torus T N  (or in an N-dimensional box with 
periodic or antiperiodic boundary conditions) are characterised by Epstein-type 5 
functions [ 1 I ]  

C ( a , n : +  ...+ aNn2,)-' 

where the power nf is determined by the quadratic kinetic terms of standard field 
theory. Epstein 5 functions are much less tractable than the harmonic oscillator 5 
functions studied here. Still, it is possible to obtain useful results concerning them. 
These will be discussed separately along with applications to physical problems. 
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